

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Dundigal, Hyderabad - 500 043

AERONAUTICAL ENGINEERING

ATTAINMENT OF COURSE OUTCOME - ACTION TAKEN REPORT

Name of the faculty:	Dr. Y B Sudhir Sastry	Department:	Aeronautical Engineering
Regulation:	IARE - R16	Batch:	2017 - 2021
Course Name:	Analysis of Aircraft Structures	Course Code:	AAE006
Semester:	IV	Target Value:	54% (1.8)

Attainment of COs:

Course Outcome		Direct attainment	Indirect attainment	Overall attainment	Observation	
CO 1	Utilize the energy principles to aircraft structural components for interpreting minimal stress loading conditions.	0.9	2.6	1.2	Attainment target is not reached	
CO 2	Choose the minimum energy principles and Fourier series solutions to thin rectangular plates subject to a given boundary conditions for predicting the stresses and strains.	0.6	2.6	1.0	Attainment target is not reached	
CO 3	Inspect the deflection and twist produced in thin walled open and closed section beams under torsion loads for designing beams with minimum stresses.	2	2.6	2.1	Attainment target reached	
CO 4	Develop the elementary beam bending theory to thin walled open and closed section beams for predicting warping and torsion of aircraft structural components	0.9	2.5	1.2	Attainment target is not reached	
CO 5	Illustrate the concepts in structural idealization in transforming complex structural geometries to simple structural geometries used for interpreting the stress distribution on aircraft structures.	0.9	2.6	1.2	Attainment target is not reached	
CO 6	Make use of maximum stress theories to aircraft structural components for determining failure stresses under various loading conditions.	0.9	2.5	1.2	Attainment target is not reached	

Action taken report: (To be filled by the concerned faculty / course coordinator)

CO 1: More assignments and application problems in energy principles may be given for better attainment prospects.

CO 2: More assignments and application problems in Fourier series may be given for better attainment prospects.

CO 4: More assignments and application problems in beam design may be given for better attainment prospects.

CO 5: More assignments and application problems in warping and torsion may be given for better attainment prospects.

CO 6: Real life problems may be included in assignments and question paper to make it more application orient d.

Course Coordinator

Head of the Aeronautical Aeronautical Aeronautical AERONAU EERONAU EER